(Hidden) Symmetries of Computational Problems

Michael Walter (Ruhr-Uni Bochum)

Michèle in Action, September 2023

joint works with P. Bürgisser, L. Dogan, C. Franks, A. Garg, V. Makam, H. Nieuwboer, R. Oliveira, A. Ramachandran, F. Witteveen, A. Wigderson, ...

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$\binom{a_1}{\ddots} X \binom{b_1}{\cdots} X \binom{b_1}{\cdots} (a_1, \ldots, b_n > 0).$$

It is called *doubly stochastic* if row & column sums are 1.

Matrix scaling problem: Given X, find approx. doubly stochastic scalings.

Sinkhorn algorithm: Alternatingly normalize rows & columns:

$$\begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix} \xrightarrow{\mathsf{rows}} \begin{pmatrix} 1/3 & 2/3 \\ 1 & 0 \end{pmatrix} \xrightarrow{\mathsf{cols}} \begin{pmatrix} 1/4 & 1 \\ 3/4 & 0 \end{pmatrix} \longrightarrow \ldots \longrightarrow \begin{pmatrix} \varepsilon & 1 \\ 1-\varepsilon & 0 \end{pmatrix}$$

This converges whenever possible, and in polynomial time!
 Possible iff bipartite perfect matching in support of X.

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$\binom{a_1}{\ddots} X \binom{b_1}{\cdots} X \binom{b_1}{\cdots} (a_1, \ldots, b_n > 0).$$

It is called *doubly stochastic* if row & column sums are 1.

Matrix scaling problem: Given X, find approx. doubly stochastic scalings.

Sinkhorn algorithm: Alternatingly normalize rows & columns:

$$\begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix} \xrightarrow{\mathsf{rows}} \begin{pmatrix} 1/3 & 2/3 \\ 1 & 0 \end{pmatrix} \xrightarrow{\mathsf{cols}} \begin{pmatrix} 1/4 & 1 \\ 3/4 & 0 \end{pmatrix} \longrightarrow \ldots \longrightarrow \begin{pmatrix} \varepsilon & 1 \\ 1-\varepsilon & 0 \end{pmatrix}$$

This converges whenever possible, and in polynomial time!
 Possible iff bipartite perfect matching in support of X.

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$\binom{a_1}{\ddots} X \binom{b_1}{\cdots} X \binom{b_1}{\cdots} (a_1, \ldots, b_n > 0).$$

It is called *doubly stochastic* if row & column sums are 1.

Matrix scaling problem: Given X, find approx. doubly stochastic scalings.

Sinkhorn algorithm: Alternatingly normalize rows & columns:

$$\begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix} \xrightarrow{\mathsf{rows}} \begin{pmatrix} 1/3 & 2/3 \\ 1 & 0 \end{pmatrix} \xrightarrow{\mathsf{cols}} \begin{pmatrix} 1/4 & 1 \\ 3/4 & 0 \end{pmatrix} \longrightarrow \ldots \longrightarrow \begin{pmatrix} \varepsilon & 1 \\ 1-\varepsilon & 0 \end{pmatrix}$$

This converges whenever possible, and in polynomial time! [LSW]
 Possible iff bipartite perfect matching in support of X.

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$\binom{a_1}{\ddots} X \binom{b_1}{\cdots} X \binom{b_1}{\cdots} (a_1, \ldots, b_n > 0).$$

It is called *doubly stochastic* if row & column sums are 1.

Matrix scaling problem: Given X, find approx. doubly stochastic scalings.

Sinkhorn algorithm: Alternatingly normalize rows & columns:

$$\begin{pmatrix} 1 & 2 \\ 4 & 0 \end{pmatrix} \xrightarrow{\mathsf{rows}} \begin{pmatrix} 1/3 & 2/3 \\ 1 & 0 \end{pmatrix} \xrightarrow{\mathsf{cols}} \begin{pmatrix} 1/4 & 1 \\ 3/4 & 0 \end{pmatrix} \longrightarrow \ldots \longrightarrow \begin{pmatrix} \varepsilon & 1 \\ 1-\varepsilon & 0 \end{pmatrix}$$

- This converges whenever possible, and in polynomial time!
 [Lsw]
- Possible iff bipartite perfect matching in support of X.

Let X be matrix with nonnegative entries. A scaling of X is a matrix

$$\binom{a_1}{\ddots} X \binom{b_1}{\cdots} X \binom{b_1}{\cdots} (a_1, \ldots, b_n > 0).$$

It is called *doubly stochastic* if row & column sums are 1.

Matrix scaling problem: Given X, find approx. doubly stochastic scalings.

Sinkhorn algorithm: Alternatingly normalize rows & columns:

- ► Why does such a simple "greedy" algorithm work?
- What's the deal with perfect matchings?
- Answer to both: Hidden symmetry the permanent of X. And this is not an accident...

Overview

There are geometric and algebraic problems, arising from group actions, that are amenable to convex optimization on symmetric spaces.

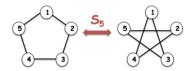
Scaling & marginal problems

Norm minimization

These are connected to a wide range of problems in mathematics and computer science that at first glance might appear unrelated.

Plan for today:

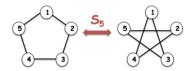
- Introduction to the setting
- Applications and connections
- Algorithmic solutions



Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:

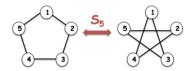
- no polynomial-time algorithm known for graph isomorphism
- matrices equivalent iff equal rank, but how about tensors?
- given an arithmetic formula, does it always compute zero? finding a deterministic algorithm is famous open problem in computer science
- computing normal forms, describing moduli spaces and invariants...



Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:

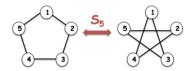
- ▶ no polynomial-time algorithm known for graph isomorphism
- matrices equivalent iff equal rank, but how about tensors?
- given an arithmetic formula, does it always compute zero? finding a deterministic algorithm is famous open problem in computer science
- computing normal forms, describing moduli spaces and invariants...



Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:

- ▶ no polynomial-time algorithm known for graph isomorphism
- matrices equivalent iff equal rank, but how about tensors?
- given an arithmetic formula, does it always compute zero? finding a deterministic algorithm is famous open problem in computer science
- computing normal forms, describing moduli spaces and invariants...



Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:

- ▶ no polynomial-time algorithm known for graph isomorphism
- matrices equivalent iff equal rank, but how about tensors?
- given an arithmetic formula, does it always compute zero? finding a deterministic algorithm is famous open problem in computer science
- computing normal forms, describing moduli spaces and invariants...

- ▶ Matrices and want to ignore basis: GL(n) by conjugation $g \cdot M := gMg^{-1}$
- Tensor networks: simultaneous conjugation on matrix tuples

 $g \cdot (M_j) := (gM_jg^{-1})$

- ► Quantum channels: left-right action on matrix tuples $(g,h) \cdot (M_j) := (gM_jh^T) \qquad \Phi(X) = \sum_i M_j XM_j$
- ▶ The above are also examples of quiver representations.
- Quantum states, but also bilinear problems: tensor action

$$(A, B, C) \cdot T := (A \otimes B \otimes C) T$$

▶ Matrices and want to ignore basis: GL(n) by conjugation

$$g \cdot M := gMg^{-2}$$

Tensor networks: simultaneous conjugation on matrix tuples

- ▶ Quantum channels: left-right action on matrix tuples $(g, h) \cdot (M_j) := (gM_jh^T) \qquad \Phi(X) = \sum M_jX$
- ► The above are also examples of quiver representations.
- Quantum states, but also bilinear problems: tensor action

$$(A, B, C) \cdot T := (A \otimes B \otimes C) T$$

▶ Matrices and want to ignore basis: GL(n) by conjugation

$$g \cdot M := gMg^{-2}$$

Tensor networks: simultaneous conjugation on matrix tuples

- ► Quantum channels: left-right action on matrix tuples $(g,h) \cdot (M_j) := (gM_jh^T) \qquad \Phi(X) = \sum_i M_j X M_j^*$
- ▶ The above are also examples of quiver representations.
- Quantum states, but also bilinear problems: tensor action

$$(A, B, C) \cdot T := (A \otimes B \otimes C) T$$

▶ Matrices and want to ignore basis: GL(n) by conjugation

$$g \cdot M := gMg^{-1}$$

Tensor networks: simultaneous conjugation on matrix tuples

Quantum channels: left-right action on matrix tuples

$$(g,h)\cdot(M_j):=(gM_jh^T)$$
 $\Phi(X)=\sum_j M_jXM_j^*$

- ► The above are also examples of quiver representations.
- Quantum states, but also bilinear problems: tensor action

$$(A, B, C) \cdot T := (A \otimes B \otimes C) T$$

▶ Matrices and want to ignore basis: GL(n) by conjugation

$$g \cdot M := gMg^{-2}$$

Tensor networks: simultaneous conjugation on matrix tuples

Quantum channels: left-right action on matrix tuples

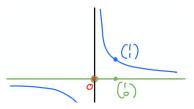
$$(g,h) \cdot (M_j) := (gM_jh^T) \qquad \Phi(X) = \sum_j M_j X M_j^*$$

- The above are also examples of quiver representations.
- Quantum states, but also bilinear problems: tensor action

$$(A, B, C) \cdot T := (A \otimes B \otimes C) T$$

Formalizing equivalence: Orbit problems

Group $G \subseteq GL_n(\mathbb{C})$ complex reductive, such as GL_n , SL_n , or $T_n = (\cdot \cdot)$ **Action** on $V = \mathbb{C}^m$ by linear transformations **Orbits** $Gv = \{g \cdot v : g \in G\}$ and their closures \overline{Gv}

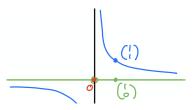


Orbit problems:

- Given v and w, are they in the same orbit? That is, is Gv = Gw?
- Robust versions: Is $w \in \overline{Gv}$? Is $\overline{Gv} \cap \overline{Gw} \neq \emptyset$?
- **•** Null cone problem: $0 \in \overline{Gv}$?

Formalizing equivalence: Orbit problems

Group $G \subseteq GL_n(\mathbb{C})$ complex reductive, such as GL_n , SL_n , or $T_n = (\cdot \cdot)$ **Action** on $V = \mathbb{C}^m$ by linear transformations **Orbits** $Gv = \{g \cdot v : g \in G\}$ and their closures \overline{Gv}

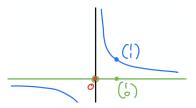


Orbit problems:

- Given v and w, are they in the same orbit? That is, is Gv = Gw?
- Robust versions: Is $w \in \overline{Gv}$? Is $\overline{Gv} \cap \overline{Gw} \neq \emptyset$?
- Null cone problem: $0 \in \overline{Gv}$?

Formalizing equivalence: Orbit problems

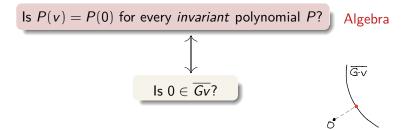
Group $G \subseteq GL_n(\mathbb{C})$ complex reductive, such as GL_n , SL_n , or $T_n = (\cdot \cdot)$ **Action** on $V = \mathbb{C}^m$ by linear transformations **Orbits** $Gv = \{g \cdot v : g \in G\}$ and their closures \overline{Gv}

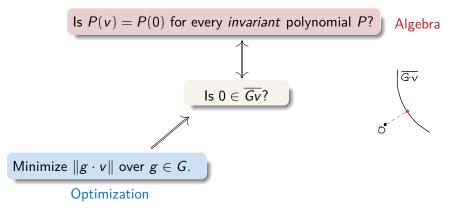


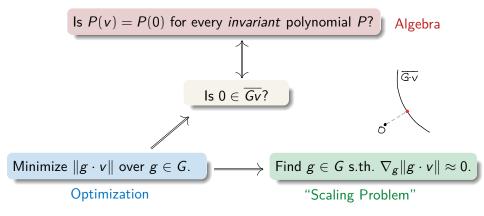
Orbit problems:

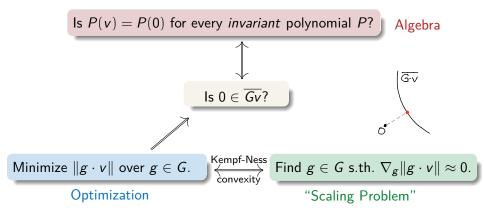
- Given v and w, are they in the same orbit? That is, is Gv = Gw?
- Robust versions: Is $w \in \overline{Gv}$? Is $\overline{Gv} \cap \overline{Gw} \neq \emptyset$?
- Null cone problem: $0 \in \overline{Gv}$?

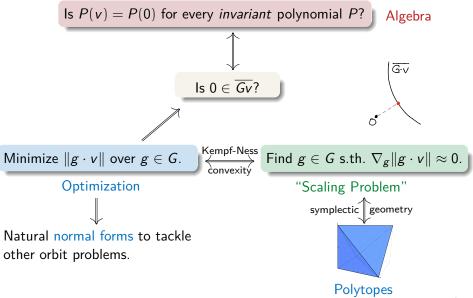
For concreteness, focus on null cone problem:

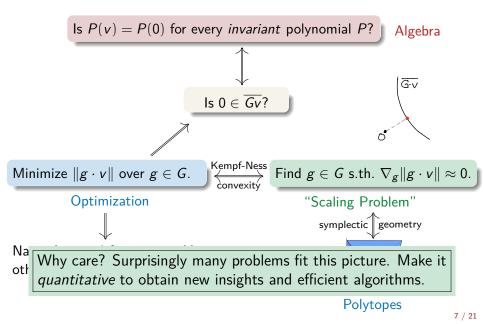












Let $G = T_n \times T_n$ act on $V = Mat_n(\mathbb{C})$:

$$(g,h) \cdot M = \begin{pmatrix} g_1 & & \\ & \ddots & \\ & & g_n \end{pmatrix} M \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & h_n \end{pmatrix}$$

Norm minimization:

$$\inf_{g,h} ||(g,h) \cdot M||^2 = \inf_{g,h} \sum_{i,j} |g_i M_{ij} h_j|^2 = \inf_{x,y \in \mathbb{R}^n} \sum_{i,j} |M_{ij}|^2 e^{x_i + y_j}$$

▶ log-convex in x and y

Gradient:

$$\nabla_{x=y=0}(\ldots)=\big(\mathbf{r}(M),\mathbf{c}(M)\big)$$

where $\mathbf{r}(M)$, $\mathbf{c}(M)$ row and column sums of matrix with entries $|M_{ij}|^2$.

Matrix scaling and norm minimization are equivalent by convexity! © Explains Sinkhorn & permanent. Starting point for cutting-edge algos.

Let $G = T_n \times T_n$ act on $V = Mat_n(\mathbb{C})$:

$$(g,h)\cdot M = \begin{pmatrix} g_1 & & \\ & \ddots & \\ & & g_n \end{pmatrix} M \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & & h_n \end{pmatrix}$$

Norm minimization:

$$\inf_{g,h} \|(g,h) \cdot M\|^2 = \inf_{g,h} \sum_{i,j} |g_i M_{ij} h_j|^2 = \inf_{x,y \in \mathbb{R}^n} \sum_{i,j} |M_{ij}|^2 e^{x_i + y_j}$$

▶ log-convex in x and y

Gradient:

$$\nabla_{x=y=0}(\ldots)=\big(\mathbf{r}(M),\mathbf{c}(M)\big)$$

where $\mathbf{r}(M)$, $\mathbf{c}(M)$ row and column sums of matrix with entries $|M_{ij}|^2$.

Matrix scaling and norm minimization are equivalent by convexity! © Explains Sinkhorn & permanent. Starting point for cutting-edge algos.

Let $G = T_n \times T_n$ act on $V = Mat_n(\mathbb{C})$:

$$(g,h) \cdot M = \begin{pmatrix} g_1 & \\ & \ddots & \\ & & g_n \end{pmatrix} M \begin{pmatrix} h_1 & \\ & \ddots & \\ & & h_n \end{pmatrix}$$

Norm minimization:

$$\inf_{g,h} ||(g,h) \cdot M||^2 = \inf_{g,h} \sum_{i,j} |g_i M_{ij} h_j|^2 = \inf_{\mathbf{x}, \mathbf{y} \in \mathbb{R}^n} \sum_{i,j} |M_{ij}|^2 e^{\mathbf{x}_i + \mathbf{y}_j}$$

► log-convex in x and y

Gradient:

$$\nabla_{x=y=0}(\ldots)=\big(\mathbf{r}(M),\mathbf{c}(M)\big)$$

where $\mathbf{r}(M)$, $\mathbf{c}(M)$ row and column sums of matrix with entries $|M_{ij}|^2$.

Matrix scaling and norm minimization are equivalent by convexity! © Explains Sinkhorn & permanent. Starting point for cutting-edge algos.

Let $G = T_n \times T_n$ act on $V = Mat_n(\mathbb{C})$:

$$(g,h)\cdot M = \begin{pmatrix} g_1 & & \\ & \ddots & \\ & & g_n \end{pmatrix} M \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & & h_n \end{pmatrix}$$

Norm minimization:

$$\inf_{g,h} ||(g,h) \cdot M||^2 = \inf_{g,h} \sum_{i,j} |g_i M_{ij} h_j|^2 = \inf_{x,y \in \mathbb{R}^n} \sum_{i,j} |M_{ij}|^2 e^{x_i + y_j}$$

• log-convex in x and y

Gradient:

$$\nabla_{x=y=0}(\ldots) = \big(\mathbf{r}(M), \mathbf{c}(M)\big)$$

where $\mathbf{r}(M)$, $\mathbf{c}(M)$ row and column sums of matrix with entries $|M_{ij}|^2$.

Matrix scaling and norm minimization are equivalent by convexity! © Explains Sinkhorn & permanent. Starting point for cutting-edge algos.

Let $G = \operatorname{ST}_n \times \operatorname{ST}_n$ act on $V = \operatorname{Mat}_n(\mathbb{C})$:

$$(g,h)\cdot M = \begin{pmatrix} g_1 & & \\ & \ddots & \\ & & g_n \end{pmatrix} M \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & & h_n \end{pmatrix}$$

Norm minimization:

$$\inf_{g,h} ||(g,h) \cdot M||^2 = \inf_{g,h} \sum_{i,j} |g_i M_{ij} h_j|^2 = \inf_{x,y \in \mathbb{R}^n_{\sum = 0}} \sum_{i,j} |M_{ij}|^2 e^{x_i + y_j}$$

• log-convex in
$$x$$
 and y

Gradient:

$$\nabla_{x=y=0}(\ldots) = (\mathbf{r}(M), \mathbf{c}(M)) - \|M\|^2(\mathbf{1}, \mathbf{1})$$

where $\mathbf{r}(M)$, $\mathbf{c}(M)$ row and column sums of matrix with entries $|M_{ij}|^2$.

Matrix scaling and norm minimization are equivalent by convexity! © Explains Sinkhorn & permanent. Starting point for cutting-edge algos.

Let $G = \operatorname{ST}_n \times \operatorname{ST}_n$ act on $V = \operatorname{Mat}_n(\mathbb{C})$:

$$(g,h)\cdot M = \begin{pmatrix} g_1 & & \\ & \ddots & \\ & & g_n \end{pmatrix} M \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & & h_n \end{pmatrix}$$

Norm minimization:

$$\inf_{g,h} ||(g,h) \cdot M||^2 = \inf_{g,h} \sum_{i,j} |g_i M_{ij} h_j|^2 = \inf_{x,y \in \mathbb{R}^n_{\sum = 0}} \sum_{i,j} |M_{ij}|^2 e^{x_i + y_j}$$

Gradient:

$$\nabla_{x=y=0}(\ldots) = (\mathbf{r}(M), \mathbf{c}(M)) - \|M\|^2 (\mathbf{1}, \mathbf{1})$$

where $\mathbf{r}(M)$, $\mathbf{c}(M)$ row and column sums of matrix with entries $|M_{ij}|^2$.

Matrix scaling and norm minimization are equivalent by convexity! Explains Sinkhorn & permanent. Starting point for cutting-edge algos.

Let $G = \operatorname{ST}_n \times \operatorname{ST}_n$ act on $V = \operatorname{Mat}_n(\mathbb{C})$:

$$(g,h)\cdot M = \begin{pmatrix} g_1 & & \\ & \ddots & \\ & & g_n \end{pmatrix} M \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & & h_n \end{pmatrix}$$

Norm minimization:

$$\inf_{g,h} ||(g,h) \cdot M||^2 = \inf_{g,h} \sum_{i,j} |g_i M_{ij} h_j|^2 = \inf_{x,y \in \mathbb{R}^n_{\sum = 0}} \sum_{i,j} |M_{ij}|^2 e^{x_i + y_j}$$

Gradient:

$$\nabla_{x=y=0}(\ldots) = (\mathbf{r}(M), \mathbf{c}(M)) - \|M\|^2 (\mathbf{1}, \mathbf{1})$$

where $\mathbf{r}(M)$, $\mathbf{c}(M)$ row and column sums of matrix with entries $|M_{ij}|^2$.

GIT vs symplectic quotient: Given semistable M, Sinkhorn algorithm approximates $M' \in \overline{G \cdot M}$ with zero moment map...

Let $G = \operatorname{ST}_n \times \operatorname{ST}_n$ act on $V = \operatorname{Mat}_n(\mathbb{C})$:

$$(g,h)\cdot M = \begin{pmatrix} g_1 & & \\ & \ddots & \\ & & g_n \end{pmatrix} M \begin{pmatrix} h_1 & & \\ & \ddots & \\ & & & h_n \end{pmatrix}$$

Norm minimization:

$$\inf_{g,h} ||(g,h) \cdot M||^2 = \inf_{g,h} \sum_{i,j} |g_i M_{ij} h_j|^2 = \inf_{x,y \in \mathbb{R}^n_{\sum = 0}} \sum_{i,j} |M_{ij}|^2 e^{x_i + y_j}$$

Gradient:

$$\nabla_{x=y=0}(\ldots) = (\mathbf{r}(M), \mathbf{c}(M)) - \|M\|^2 (\mathbf{1}, \mathbf{1})$$

where $\mathbf{r}(M)$, $\mathbf{c}(M)$ row and column sums of matrix with entries $|M_{ij}|^2$.

In general, torus actions capture linear programming – one of the most widely used paradigms in convex optimization (and more)!

Example: Horn problem

Let $\alpha_1 \ge \ldots \ge \alpha_n$, $\beta_1 \ge \ldots \ge \beta_n$, $\gamma_1 \ge \ldots \ge \gamma_n$ be integers.

Horn problem: When \exists Hermitian $n \times n$ matrices A, B, C with spectrum α , β , γ such that A + B = C?

- Horn conjectured exponentially many linear inequalities on α , β , γ
- e.g., $\alpha_1 + \beta_1 \ge \gamma_1$
- proved in late 90s. by now, very precise mathematical understanding. [Klyachko, Knutson-Tao, Belkale, Ressayre, Paradan, ...]

Knutson-Tao: . . . iff Littlewood-Richardson coefficient $c_{lpha,B}^{\gamma} > 0$

- counts multiplicities in representation theory, combinatorial gadgets, integer points in polytopes,
- poly-time algorithm can check if this is the case

[Mulmuley]

Yet, no known efficient algorithms to **find** such A, B, C (if α, β, γ are compatible), or to find a violated inequality (if they are not).

Example: Horn problem

Let $\alpha_1 \ge \ldots \ge \alpha_n$, $\beta_1 \ge \ldots \ge \beta_n$, $\gamma_1 \ge \ldots \ge \gamma_n$ be integers.

Horn problem: When \exists Hermitian $n \times n$ matrices A, B, C with spectrum α , β , γ such that A + B = C?

- Horn conjectured exponentially many linear inequalities on α , β , γ
- e.g., $\alpha_1 + \beta_1 \ge \gamma_1$
- proved in late 90s. by now, very precise mathematical understanding. [Klyachko, Knutson-Tao, Belkale, Ressayre, Paradan, ...]

Knutson-Tao: ... iff Littlewood-Richardson coefficient $c_{\alpha,\beta}^{\gamma} > 0$

- counts multiplicities in representation theory, combinatorial gadgets, integer points in polytopes, ...
- poly-time algorithm can check if this is the case

Yet, no known efficient algorithms to **find** such A, B, C (if α, β, γ are compatible), or to find a violated inequality (if they are not).

[Mulmuley]

Example: Algorithmic Horn problem

Let $\alpha_1 \ge \ldots \ge \alpha_n$, $\beta_1 \ge \ldots \ge \beta_n$, $\gamma_1 \ge \ldots \ge \gamma_n$ be integers.

Horn problem: When \exists Hermitian $n \times n$ matrices A, B, C with spectrum α , β , γ such that A + B = C?

- ► Horn conjectured exponentially many linear inequalities on α , β , γ
- e.g., $\alpha_1 + \beta_1 \ge \gamma_1$
- proved in late 90s. by now, very precise mathematical understanding. [Klyachko, Knutson-Tao, Belkale, Ressayre, Paradan, ...]

Knutson-Tao: ... iff Littlewood-Richardson coefficient $c_{\alpha,\beta}^{\gamma} > 0$

- counts multiplicities in representation theory, combinatorial gadgets, integer points in polytopes, ...
- poly-time algorithm can check if this is the case

Yet, no known efficient algorithms to **find** such A, B, C (if α, β, γ are compatible), or to find a violated inequality (if they are not).

[Mulmulev]

Any matrix tuple $X = (X_k)$ defines map $\Phi(A) = \sum_k X_k A X_k^*$. Scaling:

$$(g,h) \cdot (X_k) = (gX_kh^T) \qquad (g,h \in \mathrm{GL}_n)$$

Doubly stochastic if $\Phi(I) = I$ and $\Phi^*(I) = I$.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.

Possible iff det $\sum_{k} \alpha_k \otimes X_k \neq 0$ for some matrices α_k (semi-invariants!).

equivalent: is arithmetic formula in non-commuting variables nonzero?

a simple algo solves this in deterministic poly-time! [Garg et al, Ivanyos et al

When α_k restricted to scalars: major open problem in computer science!

Any matrix tuple $X = (X_k)$ defines map $\Phi(A) = \sum_k X_k A X_k^*$. Scaling:

$$(g,h) \cdot (X_k) = (gX_kh^T) \qquad (g,h \in \mathrm{GL}_n)$$

Doubly stochastic if $\Phi(I) = I$ and $\Phi^*(I) = I$.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.

Possible iff det $\sum_k \alpha_k \otimes X_k \neq 0$ for some matrices α_k (semi-invariants!).

equivalent: is arithmetic formula in non-commuting variables nonzero?

a simple algo solves this in deterministic poly-time! [Garg et al, Ivanyos et al [Garg et al, Ivanyos et al

When α_k restricted to scalars: major open problem in computer science!

Any matrix tuple $X = (X_k)$ defines map $\Phi(A) = \sum_k X_k A X_k^*$. Scaling:

$$(g,h) \cdot (X_k) = (gX_kh^T) \qquad (g,h \in \mathrm{GL}_n)$$

Doubly stochastic if $\Phi(I) = I$ and $\Phi^*(I) = I$.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.

Possible iff det $\sum_{k} \alpha_{k} \otimes X_{k} \neq 0$ for some matrices α_{k} (semi-invariants!).

equivalent: is arithmetic formula in non-commuting variables nonzero?

a simple algo solves this in deterministic poly-time! [Garg et al, Ivanyos et a

When α_k restricted to scalars: major open problem in computer science!

Any matrix tuple $X = (X_k)$ defines map $\Phi(A) = \sum_k X_k A X_k^*$. Scaling:

$$(g,h) \cdot (X_k) = (gX_kh^T) \qquad (g,h \in \mathrm{GL}_n)$$

Doubly stochastic if $\Phi(I) = I$ and $\Phi^*(I) = I$.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.

Possible iff det $\sum_{k} \alpha_{k} \otimes X_{k} \neq 0$ for some matrices α_{k} (semi-invariants!).

- equivalent: is arithmetic formula in non-commuting variables nonzero?
- a simple algo solves this in deterministic poly-time! [Garg et al, Ivanyos et al]

When α_k restricted to scalars: major open problem in computer science!

Any matrix tuple $X = (X_k)$ defines map $\Phi(A) = \sum_k X_k A X_k^*$. Scaling:

$$(g,h) \cdot (X_k) = (gX_kh^T) \qquad (g,h \in \mathrm{GL}_n)$$

Doubly stochastic if $\Phi(I) = I$ and $\Phi^*(I) = I$.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.

Possible iff det $\sum_{k} \alpha_k \otimes X_k \neq 0$ for some matrices α_k (semi-invariants!).

- equivalent: is arithmetic formula in non-commuting variables nonzero?
- a simple algo solves this in deterministic poly-time! [Garg et al, Ivanyos et al]

When α_k restricted to scalars: major open problem in computer science!

Tensors $T \in (\mathbb{C}^n)^{\otimes d}$ describe quantum states of d particles. *Scaling:* $(g_1, \dots, g_d) \cdot T := (g_1 \otimes \dots \otimes g_d) T \qquad (g_k \in GL_n)$

▶ state of *k*-th particle is $\sigma_k = S_k S_k^*$, where S_k is *k*-th flattening of *S*.

Tensor scaling problem: Given T, which $(\sigma_1, \ldots, \sigma_d)$ can be obtained by scaling?

- since [S] → (σ₁,..., σ_d) is a moment map for action of K = U(n)^d, answer captured by moment polytopes
- ► distance to origin measures instability → recent notions such as quantum functionals, G-stable ranks.
 [Blasiak et al, Christandl et al, Derksen, ...
- applications in algebraic complexity, combinatorics, q. information, ...
- exponentially complex polytopes, succinctly encoded by group action

Tensors $T \in (\mathbb{C}^n)^{\otimes d}$ describe quantum states of *d* particles. *Scaling:*

$$S = (g_1, \ldots, g_d) \cdot T := (g_1 \otimes \cdots \otimes g_d) T$$
 $(g_k \in GL_n)$

► state of *k*-th particle is $\sigma_k = S_k S_k^*$, where S_k is *k*-th flattening of *S*.

Tensor scaling problem: Given T, which $(\sigma_1, \ldots, \sigma_d)$ can be obtained by scaling?

- Since [S] → (σ₁,..., σ_d) is a moment map for action of K = U(n)^d, answer captured by moment polytopes
- ► distance to origin measures instability → recent notions such as quantum functionals, G-stable ranks. [Blasiak et al, Christandl et al, Derksen, ...
- applications in algebraic complexity, combinatorics, q. information, ...
- exponentially complex polytopes, succinctly encoded by group action

Tensors $T \in (\mathbb{C}^n)^{\otimes d}$ describe quantum states of *d* particles. *Scaling:*

$$S = (g_1, \ldots, g_d) \cdot T := (g_1 \otimes \cdots \otimes g_d) T$$
 $(g_k \in GL_n)$

► state of *k*-th particle is $\sigma_k = S_k S_k^*$, where S_k is *k*-th flattening of *S*.

Tensor scaling problem: Given T, which $(\sigma_1, \ldots, \sigma_d)$ can be obtained by scaling?

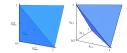
- Since [S] → (σ₁,..., σ_d) is a moment map for action of K = U(n)^d, answer captured by moment polytopes
- ► distance to origin measures instability → recent notions such as quantum functionals, G-stable ranks. [Blasiak et al, Christandl et al, Derksen, ...
- applications in algebraic complexity, combinatorics, q. information, ...
- exponentially complex polytopes, succinctly encoded by group action

Tensors $T \in (\mathbb{C}^n)^{\otimes d}$ describe quantum states of *d* particles. *Scaling:*

$$S = (g_1, \ldots, g_d) \cdot T := (g_1 \otimes \cdots \otimes g_d) T$$
 $(g_k \in GL_n)$

► state of *k*-th particle is $\sigma_k = S_k S_k^*$, where S_k is *k*-th flattening of *S*.

Tensor scaling problem: Given T, which $(\sigma_1, \ldots, \sigma_d)$ can be obtained by scaling?



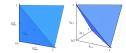
- Since [S] → (σ₁,..., σ_d) is a moment map for action of K = U(n)^d, answer captured by moment polytopes
- ► distance to origin measures instability → recent notions such as quantum functionals, G-stable ranks. [Blasiak et al, Christandl et al, Derksen,
- applications in algebraic complexity, combinatorics, q. information, ...
- exponentially complex polytopes, succinctly encoded by group action

Tensors $T \in (\mathbb{C}^n)^{\otimes d}$ describe quantum states of *d* particles. *Scaling:*

$$S = (g_1, \ldots, g_d) \cdot T := (g_1 \otimes \cdots \otimes g_d) T$$
 $(g_k \in GL_n)$

► state of *k*-th particle is $\sigma_k = S_k S_k^*$, where S_k is *k*-th flattening of *S*.

Tensor scaling problem: Given T, which $(\sigma_1, \ldots, \sigma_d)$ can be obtained by scaling?



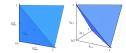
- Since [S] → (σ₁,..., σ_d) is a moment map for action of K = U(n)^d, answer captured by moment polytopes
- ► distance to origin measures instability → recent notions such as quantum functionals, G-stable ranks.
 [Blasiak et al, Christandl et al, Derksen, ...]
- ▶ applications in algebraic complexity, combinatorics, q. information, ...
- exponentially complex polytopes, succinctly encoded by group action

Tensors $T \in (\mathbb{C}^n)^{\otimes d}$ describe quantum states of *d* particles. *Scaling:*

$$S = (g_1, \ldots, g_d) \cdot T := (g_1 \otimes \cdots \otimes g_d) T$$
 $(g_k \in GL_n)$

► state of *k*-th particle is $\sigma_k = S_k S_k^*$, where S_k is *k*-th flattening of *S*.

Tensor scaling problem: Given T, which $(\sigma_1, \ldots, \sigma_d)$ can be obtained by scaling?



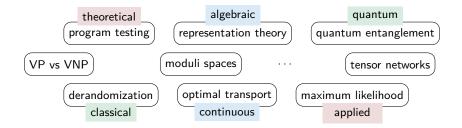
- Since [S] → (σ₁,..., σ_d) is a moment map for action of K = U(n)^d, answer captured by moment polytopes
- ► distance to origin measures instability → recent notions such as quantum functionals, G-stable ranks.
 [Blasiak et al, Christandl et al, Derksen, ...]
- ▶ applications in algebraic complexity, combinatorics, q. information, ...
- exponentially complex polytopes, succinctly encoded by group action

What other interesting polytopes are hidden in this way?

Augorithms and Combinatorial Optimization

Connections and applications

Scaling problems capture and connect many other applications (thanks to often hidden symmetries):



This was discovered in a series of works, by many authors, over the past years. It has already proved key to faster algorithms and structural insight.

General picture? How to find algorithms beyond Sinkhorn & friends?

Symmetry and Optimization

Norm minimization and gradient

In general, we want to minimize the Kempf-Ness function:

$$F: G \to \mathbb{R}, \quad F(g) := \log \|g \cdot v\|$$

For concreteness, $G = GL_n$. By the polar decomposition, can restrict to:

$$\mathsf{PD}_n = \{p = e^X : X \in \mathsf{Herm}_n\} \cong K \setminus G$$

This is a Hadamard symmetric space. It has nonpositive curvature:

Gradient $\nabla F(I)$ is moment map in the sense of symplectic geometry. As discussed $\nabla F = 0$ captures natural "scaling" problems!

Norm minimization and gradient

In general, we want to minimize the Kempf-Ness function:

$$F\colon G\to\mathbb{R}, \quad F(g):=\log\|g\cdot v\|$$

For concreteness, $G = GL_n$. By the polar decomposition, can restrict to:

$$\mathsf{PD}_n = \{p = e^X : X \in \mathsf{Herm}_n\} \cong K \setminus G$$

This is a Hadamard symmetric space. It has nonpositive curvature:

Gradient $\nabla F(I)$ is moment map in the sense of symplectic geometry. As discussed $\nabla F = 0$ captures natural "scaling" problems!

Norm minimization and gradient

In general, we want to minimize the Kempf-Ness function:

$$F\colon G\to\mathbb{R}, \quad F(g):=\log\|g\cdot v\|$$

For concreteness, $G = GL_n$. By the polar decomposition, can restrict to:

$$\mathsf{PD}_n = \{p = e^X : X \in \mathsf{Herm}_n\} \cong K \setminus G$$

This is a Hadamard symmetric space. It has nonpositive curvature:

Gradient $\nabla F(I)$ is moment map in the sense of symplectic geometry. As discussed $\nabla F = 0$ captures natural "scaling" problems!

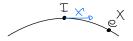
Geodesic convexity

While not convex in the usual sense, the objective

 $F(p) = \log \|p \cdot v\|$

is convex along the geodesics of PD_n , i.e., $\partial_t^2 F(e^{Xt}) \ge 0$.

[Kempf-Ness]



This implies critical points are global minima (like in the Euclidean case).

How convex for given action? Necessary for algorithms!

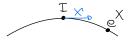
Geodesic convexity

While not convex in the usual sense, the objective

 $F(p) = \log \|p \cdot v\|$

is convex along the geodesics of PD_n , i.e., $\partial_t^2 F(e^{Xt}) \ge 0$.

[Kempf-Ness]



This implies critical points are global minima (like in the Euclidean case).

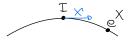
How convex for given action? Necessary for algorithms!

While not convex in the usual sense, the objective

 $F(p) = \log \|p \cdot v\|$

is convex along the geodesics of PD_n , i.e., $\partial_t^2 F(e^{Xt}) \ge 0$.

[Kempf-Ness]



This implies critical points are global minima (like in the Euclidean case).

How convex for given action? Necessary for algorithms!

Easy: The objective $F(p) = \log ||p \cdot v||$ is "smooth", meaning $\partial_t^2 F(e^{Xt}) \leq L ||X||_2^2$.

Not so easy: Quantitative Kempf-Ness theorem. For $F_* = \inf_p F(p)$,

$$1 - \frac{\|\nabla F\|_2}{\gamma} \leqslant e^{F_* - F} \leqslant 1 - \frac{\|\nabla F\|_2^2}{2L}$$

- \odot relates norm minimization \Leftrightarrow scaling in a quantitative way
- © implies either can solve null cone problem, rigorously!
- Non-commutative variant of convex duality.

Parameters L, γ depend on representation-theoretic data of action.

Easy: The objective $F(p) = \log ||p \cdot v||$ is "smooth", meaning $\partial_t^2 F(e^{Xt}) \leq L ||X||_2^2$.

Not so easy: Quantitative Kempf-Ness theorem. For $F_* = \inf_p F(p)$,

$$1 - \frac{\|\nabla F\|_2}{\gamma} \leqslant e^{F_* - F} \leqslant 1 - \frac{\|\nabla F\|_2^2}{2L}$$

- \odot relates norm minimization \Leftrightarrow scaling in a quantitative way
- ☺ implies either can solve null cone problem, rigorously!
- ▶ Non-commutative variant of convex duality.

Parameters L, γ depend on representation-theoretic data of action.

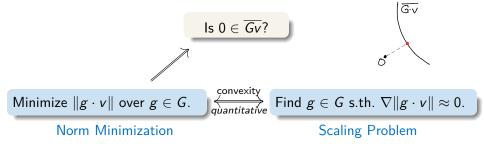
Easy: The objective $F(p) = \log ||p \cdot v||$ is "smooth", meaning $\partial_t^2 F(e^{Xt}) \leq L ||X||_2^2$.

Not so easy: Quantitative Kempf-Ness theorem. For $F_* = \inf_p F(p)$,

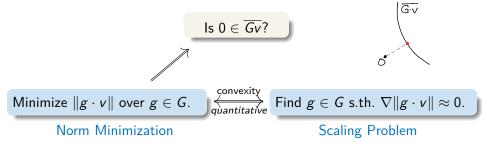
$$1 - \frac{\|\nabla F\|_2}{\gamma} \leqslant e^{F_* - F} \leqslant 1 - \frac{\|\nabla F\|_2^2}{2L}$$

- $\ensuremath{\textcircled{}}$ relates norm minimization \Leftrightarrow scaling in a quantitative way
- ③ implies either can solve null cone problem, rigorously!
- ► Non-commutative variant of convex duality.

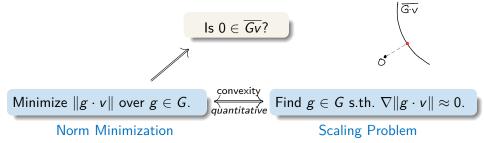
Parameters L, γ depend on representation-theoretic data of action.



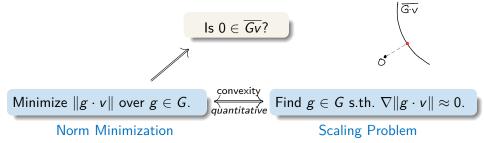
- All examples mentioned earlier fall into this framework.
- Geodesic convexity explains why simple greedy algorithms can work.
- Made quantitative by NC generalization of convex programming duality.
- We also provide general algorithms for geodesic convex optimization (which solve problems in poly time for several interesting actions).



- ► All examples mentioned earlier fall into this framework.
- Geodesic convexity explains why simple greedy algorithms can work.
- Made quantitative by NC generalization of convex programming duality.
- We also provide general algorithms for geodesic convex optimization (which solve problems in poly time for several interesting actions).



- ► All examples mentioned earlier fall into this framework.
- Geodesic convexity explains why simple greedy algorithms can work.
- ► Made quantitative by NC generalization of convex programming duality.
- We also provide general algorithms for geodesic convex optimization (which solve problems in poly time for several interesting actions).



- ► All examples mentioned earlier fall into this framework.
- Geodesic convexity explains why simple greedy algorithms can work.
- Made quantitative by NC generalization of convex programming duality.
- We also provide general algorithms for geodesic convex optimization (which solve problems in poly time for several interesting actions).

Simplest approach: Repeatedly perform geodesic gradient steps

$$g \leftarrow e^{-\frac{1}{L}\nabla F(g)}g.$$

Theorem

If *F* bounded from below, algorithm finds $g \in G$ such that $\|\nabla F(g)\| \leq \varepsilon$ within $T = \text{poly}(\frac{1}{\varepsilon}, \text{input size})$ steps.

Analysis: Smoothness implies F decreases in each step. Combine with a priori lower bound obtained using constructive invariant theory.

Corollary

Same algorithm solves null cone problem in time poly($\frac{1}{2}$, input size).

Simplest approach: Repeatedly perform geodesic gradient steps

$$g \leftarrow e^{-\frac{1}{L}\nabla F(g)}g.$$

Theorem

If *F* bounded from below, algorithm finds $g \in G$ such that $\|\nabla F(g)\| \leq \varepsilon$ within $T = \text{poly}(\frac{1}{\varepsilon}, \text{input size})$ steps.

Analysis: Smoothness implies F decreases in each step. Combine with a priori lower bound obtained using constructive invariant theory.

Corollary

Same algorithm solves null cone problem in time poly($\frac{1}{2}$, input size).

Simplest approach: Repeatedly perform geodesic gradient steps

$$g \leftarrow e^{-\frac{1}{L}\nabla F(g)}g.$$

Theorem

If *F* bounded from below, algorithm finds $g \in G$ such that $\|\nabla F(g)\| \leq \varepsilon$ within $T = \text{poly}(\frac{1}{\varepsilon}, \text{input size})$ steps.

Analysis: Smoothness implies F decreases in each step. Combine with a priori lower bound obtained using constructive invariant theory.

Corollary

Same algorithm solves null cone problem in time poly($\frac{1}{\nu}$, input size).

Simplest approach: Repeatedly perform geodesic gradient steps

$$g \leftarrow e^{-\frac{1}{L}\nabla F(g)}g.$$

Theorem

If *F* bounded from below, algorithm finds $g \in G$ such that $\|\nabla F(g)\| \leq \varepsilon$ within $T = \text{poly}(\frac{1}{\varepsilon}, \text{input size})$ steps.

Analysis: Smoothness implies F decreases in each step. Combine with a priori lower bound obtained using constructive invariant theory.

Corollary

Same algorithm solves null cone problem in time poly($\frac{1}{\nu}$, input size).

Beyond gradient descent

There are more clever algorithms: trust region or interior-point methods, which we recently generalized to Hadamard manifolds [BFGOWW,Hirai-Nieuwboer-W].

These minimize local quadratic approximations

$$F(e^Hg) \approx Q(H) = F(g) + \nabla F(g)[H] + \frac{1}{2}\nabla^2 F(g)[H, H]$$

on small neighborhoods. Need F "robust" or "self-concordant".

Theorem

If *F* bounded from below, algorithm finds $g \in G$ such that $F(g) \leq \inf_{g \in G} F(g) + \varepsilon$ within $T = \text{poly}(\log \frac{1}{\varepsilon}, \text{input size}, \frac{1}{\gamma})$ steps.

State of the art: General algorithms for convex optimization in nonpositive curvature, which in particular solve problems in GIT. Polynomial time for many interesting actions – but not always!

Beyond gradient descent

There are more clever algorithms: trust region or interior-point methods, which we recently generalized to Hadamard manifolds [BFGOWW,Hirai-Nieuwboer-W].

These minimize local quadratic approximations

$$F(e^Hg) \approx Q(H) = F(g) + \nabla F(g)[H] + \frac{1}{2}\nabla^2 F(g)[H, H]$$

on small neighborhoods. Need F "robust" or "self-concordant".

Theorem

If *F* bounded from below, algorithm finds $g \in G$ such that $F(g) \leq \inf_{g \in G} F(g) + \varepsilon$ within $T = \text{poly}(\log \frac{1}{\varepsilon}, \text{input size}, \frac{1}{\gamma})$ steps.

State of the art: General algorithms for convex optimization in nonpositive curvature, which in particular solve problems in GIT. Polynomial time for many interesting actions – but not always!

Beyond gradient descent

There are more clever algorithms: trust region or interior-point methods, which we recently generalized to Hadamard manifolds [BFGOWW,Hirai-Nieuwboer-W].

These minimize local quadratic approximations

$$F(e^Hg) \approx Q(H) = F(g) + \nabla F(g)[H] + \frac{1}{2}\nabla^2 F(g)[H,H]$$

on small neighborhoods. Need F "robust" or "self-concordant".

Theorem

If *F* bounded from below, algorithm finds $g \in G$ such that $F(g) \leq \inf_{g \in G} F(g) + \varepsilon$ within $T = \text{poly}(\log \frac{1}{\varepsilon}, \text{input size}, \frac{1}{\gamma})$ steps.

State of the art: General algorithms for convex optimization in nonpositive curvature, which in particular solve problems in GIT. Polynomial time for many interesting actions – but not always!

$$F(g) = \log \|g \cdot v\|$$

Recall scaling problem: Find $g \in G$ such that $\nabla F(g) \approx 0$. Depending on action, this can mean *doubly stochastic* matrix, ... \rightsquigarrow uniform marginals.

More generally, we can ask nonuniform scaling problem:

Given **p**, find
$$g \in G$$
 s.th. $\nabla F(g) \approx \mathbf{p}$.

In other words, want to prescribe an arbitrary value for the moment map.

Moment polytope captures possible values if restrict to Weyl chamber:

State of the art: Algorithms discussed above can also solve nonuniform scaling problem and membership in moment polytopes. Polynomial in most parameters for many interesting actions – but not in the bitsize of **p**!

```
F(g) = \log \|g \cdot v\|
```

Recall scaling problem: Find $g \in G$ such that $\nabla F(g) \approx 0$. Depending on action, this can mean *doubly stochastic* matrix, ... \rightsquigarrow uniform marginals.

More generally, we can ask nonuniform scaling problem:

Given **p**, find $g \in G$ s.th. $\nabla F(g) \approx \mathbf{p}$.

In other words, want to prescribe an arbitrary value for the moment map.

Moment polytope captures possible values if restrict to Weyl chamber:

 $\Delta(\mathbf{v}) = \{\mathbf{p} : \nabla F(g) \approx \mathbf{p}\}$

State of the art: Algorithms discussed above can also solve nonuniform scaling problem and membership in moment polytopes. Polynomial in most parameters for many interesting actions – but not in the bitsize of **p**

 $F(g) = \log \|g \cdot v\|$

Recall scaling problem: Find $g \in G$ such that $\nabla F(g) \approx 0$. Depending on action, this can mean *doubly stochastic* matrix, ... \rightsquigarrow uniform marginals.

More generally, we can ask nonuniform scaling problem:

Given **p**, find $g \in G$ s.th. $\nabla F(g) \approx \mathbf{p}$.

In other words, want to prescribe an arbitrary value for the moment map.

Moment polytope captures possible values if restrict to Weyl chamber:

$$\Delta(\mathbf{v}) = \{\mathbf{p} : \nabla F(g) \approx \mathbf{p}\}$$

State of the art: Algorithms discussed above can also solve nonuniform scaling problem and membership in moment polytopes. Polynomial in most parameters for many interesting actions – but not in the bitsize of **p**

$$F(g) = \log \|g \cdot v\|$$

Recall scaling problem: Find $g \in G$ such that $\nabla F(g) \approx 0$. Depending on action, this can mean *doubly stochastic* matrix, ... \rightsquigarrow uniform marginals.

More generally, we can ask nonuniform scaling problem:

Given **p**, find
$$g \in G$$
 s.th. $\nabla F(g) \approx \mathbf{p}$.

In other words, want to prescribe an arbitrary value for the moment map.

Moment polytope captures possible values if restrict to Weyl chamber:

$$\Delta(\mathbf{v}) = \{\mathbf{p} : \nabla F(g) \approx \mathbf{p}\}$$

State of the art: Algorithms discussed above can also solve nonuniform scaling problem and membership in moment polytopes. Polynomial in most parameters for many interesting actions – but not in the bitsize of p!

Symmetries lie behind many natural computational problems from algebra and analysis to classical and quantum CS.

Polytopes encode answers & clues to many of these problems. Often exp. vertices & facets, yet can admit efficient algos.

Symmetries are key to tackling these problems by optimization. Enabled by geodesic convexity and invariant theory.

Many open questions: Polynomial time algorithms for all actions? Complexity of algebraic problems? Structured or typical data? Other problems with natural symmetries? ... **Happy birthday, Michèle!**

