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Prelude: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix( a1
...

an

)
X
(

b1
...

bn

)
(a1, . . . , bn > 0).

It is called doubly stochastic if row & column sums are 1.

Matrix scaling problem: Given X , find approx. doubly stochastic scalings.

Sinkhorn algorithm: Alternatingly normalize rows & columns:(
1 2
4 0

)
rows−→

(
1/3 2/3
1 0

)
cols−→

(
1/4 1
3/4 0

)
−→ . . . −→

(
ε 1

1−ε 0

)
▶ This converges whenever possible, and in polynomial time! [LSW]

▶ Possible iff bipartite perfect matching in support of X .

Applications to statistics, combinatorics, numerics, complexity, machine learning, . . .

▶ Why does such a simple “greedy” algorithm work?
▶ What’s the deal with perfect matchings?
▶ Answer to both: Hidden symmetry – the permanent of X .

And this is not an accident. . .
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Overview

There are geometric and algebraic problems, arising from group actions,
that are amenable to convex optimization on symmetric spaces.

Scaling & marginal problems ←→ Norm minimization

These are connected to a wide range of problems in mathematics and
computer science that at first glance might appear unrelated.

Plan for today:
1 Introduction to the setting
2 Applications and connections
3 Algorithmic solutions
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Symmetries and group actions

Problem: How can we algorithmically and efficiently check equivalence?

Interesting (and often difficult) problems with many applications:

▶ no polynomial-time algorithm known for graph isomorphism
▶ matrices equivalent iff equal rank, but how about tensors?
▶ given an arithmetic formula, does it always compute zero? finding a

deterministic algorithm is famous open problem in computer science
▶ computing normal forms, describing moduli spaces and invariants. . .

In many applications, equivalence can be modeled by group action. . .
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Examples: Group actions and symmetries

▶ Matrices and want to ignore basis: GL(n) by conjugation

g ·M := gMg−1

▶ Tensor networks: simultaneous conjugation on matrix tuples

g · (Mj) := (gMjg−1)

▶ Quantum channels: left-right action on matrix tuples

(g , h) · (Mj) := (gMjhT ) Φ(X ) =
∑

j
MjXM∗

j

▶ The above are also examples of quiver representations.
▶ Quantum states, but also bilinear problems: tensor action

(A,B,C) · T := (A⊗ B ⊗ C)T
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Formalizing equivalence: Orbit problems

Group G ⊆ GLn(C) complex reductive, such as GLn, SLn, or Tn =
(. . .)

Action on V = Cm by linear transformations
Orbits Gv = {g · v : g ∈ G} and their closures Gv

Orbit problems:
▶ Given v and w , are they in the same orbit? That is, is Gv = Gw?
▶ Robust versions: Is w ∈ Gv? Is Gv ∩ Gw ̸= ∅?
▶ Null cone problem: 0 ∈ Gv?
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Big picture: Orbits, optimization, and scaling

For concreteness, focus on null cone problem:

Is P(v) = P(0) for every invariant polynomial P? Algebra

Is 0 ∈ Gv?

 

o

w min Hull we g

Minimize ∥g · v∥ over g ∈ G .

Optimization

Find g ∈ G s.th. ∇g∥g · v∥ ≈ 0.

“Scaling Problem”

Polytopes

Why care? Surprisingly many problems fit this picture. Make it
quantitative to obtain new insights and efficient algorithms.
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Example: Matrix scaling revisited

Let G = Tn×Tn act on V = Matn(C):

(g , h) ·M =

( g1
...

gn

)
M
(

h1
...

hn

)
Norm minimization:

infg,h∥(g , h) ·M∥2 = infg,h
∑
i,j

|giMijhj |
2 = infx,y∈Rn

∑
i,j

|Mij |
2exi+yj

▶ log-convex in x and y

Gradient:
∇x=y=0(. . .) =

(
r(M), c(M)

)
where r(M), c(M) row and column sums of matrix with entries |Mij |

2.

Matrix scaling and norm minimization are equivalent by convexity! ,
Explains Sinkhorn & permanent. Starting point for cutting-edge algos.
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GIT vs symplectic quotient: Given semistable M, Sinkhorn algorithm
approximates M ′ ∈ G ·M with zero moment map. . .
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In general, torus actions capture linear programming – one of the most
widely used paradigms in convex optimization (and more)!
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Example: Horn problem

Let α1 ⩾ . . . ⩾ αn, β1 ⩾ . . . ⩾ βn, γ1 ⩾ . . . ⩾ γn be integers.

Horn problem: When ∃ Hermitian n × n matrices A, B, C
with spectrum α, β, γ such that A + B = C?

▶ Horn conjectured exponentially many linear inequalities on α, β, γ
▶ e.g., α1 + β1 ⩾ γ1
▶ proved in late 90s. by now, very precise mathematical understanding.

[Klyachko, Knutson-Tao, Belkale, Ressayre, Paradan, . . . ]

Knutson-Tao: . . . iff Littlewood-Richardson coefficient cγ
α,β > 0

▶ counts multiplicities in representation theory,
combinatorial gadgets, integer points in polytopes, . . .

▶ poly-time algorithm can check if this is the case [Mulmuley]

Yet, no known efficient algorithms to find such A,B,C (if α,β, γ are
compatible), or to find a violated inequality (if they are not).
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Example: Algorithmic Horn problem
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Example: Operator scaling and polynomial identity testing

Any matrix tuple X = (Xk) defines map Φ(A) =
∑

k XkAX∗
k . Scaling:

(g , h) · (Xk) = (gXkhT ) (g , h ∈ GLn)

Doubly stochastic if Φ(I) = I and Φ∗(I) = I.

Operator scaling problem: Given X , find approx. doubly stochastic scaling.

Possible iff det
∑

kαk ⊗ Xk ̸= 0 for some matrices αk (semi-invariants!).
▶ equivalent: is arithmetic formula in non-commuting variables nonzero?
▶ a simple algo solves this in deterministic poly-time! [Garg et al, Ivanyos et al]

When αk restricted to scalars: major open problem in computer science!

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, MLE, . . . ).
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Example: Tensor scaling

Tensors T ∈ (Cn)⊗d describe quantum states of d particles. Scaling:

S =

(g1, . . . , gd) · T := (g1 ⊗ · · · ⊗ gd)T (gk ∈ GLn)

▶ state of k-th particle is σk = SkS∗
k , where Sk is k-th flattening of S.

Tensor scaling problem: Given T , which
(σ1, . . . , σd) can be obtained by scaling?

▶ since [S] 7→ (σ1, . . . , σd) is a moment map for action of K = U(n)d ,
answer captured by moment polytopes

▶ distance to origin measures instability → recent notions such as
quantum functionals, G-stable ranks. [Blasiak et al, Christandl et al, Derksen, . . . ]

▶ applications in algebraic complexity, combinatorics, q. information, . . .
▶ exponentially complex polytopes, succinctly encoded by group action

What other interesting polytopes are hidden in this way?
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Connections and applications

Scaling problems capture and connect many other applications (thanks to
often hidden symmetries):

program testing

VP vs VNP

derandomization

theoretical
representation theory

moduli spaces

algebraic

optimal transport maximum likelihood
appliedcontinuousclassical

quantum entanglement

tensor networks. . .

quantum

This was discovered in a series of works, by many authors, over the past
years. It has already proved key to faster algorithms and structural insight.

General picture? How to find algorithms beyond Sinkhorn & friends?
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Symmetry and Optimization
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Norm minimization and gradient

In general, we want to minimize the Kempf-Ness function:

F : G → R, F (g) := log ∥g · v∥

For concreteness, G = GLn. By the polar decomposition, can restrict to:

PDn = {p = eX : X ∈ Hermn} ∼= K\G

This is a Hadamard symmetric space. It has nonpositive curvature:

Gradient ∇F (I) is moment map in the sense of symplectic geometry.
As discussed ∇F = 0 captures natural “scaling” problems!
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Geodesic convexity

While not convex in the usual sense, the objective

F (p) = log ∥p · v∥

is convex along the geodesics of PDn, i.e., ∂2
t F (eXt) ⩾ 0. [Kempf-Ness]
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This implies critical points are global minima (like in the Euclidean case).

How convex for given action? Necessary for algorithms!
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Geodesic convexity made quantitative

While not convex in the usual sense, the objective

F (p) = log ∥p · v∥

is convex along the geodesics of PDn, i.e., ∂2
t F (eXt) ⩾ 0. [Kempf-Ness]
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Geodesic convexity made quantitative

Easy: The objective F (p) = log ∥p · v∥ is “smooth”, meaning

∂2
t F (eXt) ⩽ L∥X∥22.

Not so easy: Quantitative Kempf-Ness theorem. For F∗ = infp F (p),

1− ∥∇F∥2
γ ⩽ eF∗−F ⩽ 1− ∥∇F∥2

2
2L

, relates norm minimization ⇔ scaling in a quantitative way
, implies either can solve null cone problem, rigorously!
▶ Non-commutative variant of convex duality.

Parameters L, γ depend on representation-theoretic data of action.
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Framework: Noncommutative group optimization [BFGOWW]

Action of complex reductive G ⊆ GLn on V ∼= Cm.

Is 0 ∈ Gv?

 

o

w min Hull we g

Minimize ∥g · v∥ over g ∈ G .

Norm Minimization

Find g ∈ G s.th. ∇∥g · v∥ ≈ 0.

Scaling Problem

▶ All examples mentioned earlier fall into this framework.
▶ Geodesic convexity explains why simple greedy algorithms can work.
▶ Made quantitative by NC generalization of convex programming duality.
▶ We also provide general algorithms for geodesic convex optimization

(which solve problems in poly time for several interesting actions).
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Algorithmic appetizer

Simplest approach: Repeatedly perform geodesic gradient steps

g ← e−
1
L∇F(g)g .

Theorem
If F bounded from below, algorithm finds g ∈ G such that ∥∇F (g)∥ ⩽ ε

within T = poly( 1
ε , input size) steps.

Analysis: Smoothness implies F decreases in each step. Combine with a priori
lower bound obtained using constructive invariant theory.

Corollary
Same algorithm solves null cone problem in time poly( 1

γ , input size).

Much faster (in theory and practice) than algebraic methods (e.g., via Gröbner bases).
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Beyond gradient descent

There are more clever algorithms: trust region or interior-point methods,
which we recently generalized to Hadamard manifolds [BFGOWW,Hirai-Nieuwboer-W].

These minimize local quadratic approximations

F (eHg) ≈ Q(H) = F (g) +∇F (g)[H] +
1
2∇

2F (g)[H,H]

on small neighborhoods. Need F “robust” or “self-concordant”.

Theorem
If F bounded from below, algorithm finds g ∈ G such that
F (g) ⩽ infg∈G F (g) + ε within T = poly(log 1

ε , input size, 1
γ) steps.

State of the art: General algorithms for convex optimization in
nonpositive curvature, which in particular solve problems in GIT.
Polynomial time for many interesting actions – but not always!
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Algorithms for moment polytopes F (g) = log ∥g · v∥

Recall scaling problem: Find g ∈ G such that ∇F (g) ≈ 0 . Depending on
action, this can mean doubly stochastic matrix, . . .; uniform marginals.

More generally, we can ask nonuniform scaling problem:

Given p, find g ∈ G s.th. ∇F (g) ≈ p.

In other words, want to prescribe an arbitrary value for the moment map.

Moment polytope captures possible values if restrict to Weyl chamber:

∆(v) = {p : ∇F (g) ≈ p}

State of the art: Algorithms discussed above can also solve nonuniform
scaling problem and membership in moment polytopes. Polynomial in
most parameters for many interesting actions – but not in the bitsize of p!
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Summary and outlook

Symmetries lie behind many natural computational problems
from algebra and analysis to classical and quantum CS.

Polytopes encode answers & clues to many of these problems.
Often exp. vertices & facets, yet can admit efficient algos.

Symmetries are key to tackling these problems by optimization.
Enabled by geodesic convexity and invariant theory.

Many open questions: Polynomial time algorithms for all actions?
Complexity of algebraic problems? Structured or typical data? Other
problems with natural symmetries? . . . Happy birthday, Michèle!
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