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Prelude: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

a by
< >X< > (81,...,bn>0).
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It is called doubly stochastic if row & column sums are 1.
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Prelude: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

a by
< >X< > (81,...,bn>0).
an bn

It is called doubly stochastic if row & column sums are 1.

Matrix scaling problem: Given X, find approx. doubly stochastic scalings. )

Sinkhorn algorithm: Alternatingly normalize rows & columns:

1 2 % 1/3 2/3 ils) 1/4 1 s — £ ]_
4 0 1 0 34 0 1—¢ 0
» This converges whenever possible, and in polynomial time! [LSW]

» Possible iff bipartite perfect matching in support of X.

Applications to statistics, combinatorics, numerics, complexity, machine learning, ...
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Prelude: Matrix scaling

Let X be matrix with nonnegative entries. A scaling of X is a matrix

al by
< >X< ) (al,...,b,,>0).
an bn

It is called doubly stochastic if row & column sums are 1.

Matrix scaling problem: Given X, find approx. doubly stochastic scalings. )

Sinkhorn algorithm: Alternatingly normalize rows & columns:

» Why does such a simple “greedy” algorithm work?
» What's the deal with perfect matchings?

» Answer to both: Hidden symmetry — the permanent of X.
And this is not an accident. . .

Applications to statistics, combinatorics, numerics, complexity, machine learning, ...
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Overview

There are geometric and algebraic problems, arising from group actions,
that are amenable to convex optimization on symmetric spaces.

Scaling & marginal problems‘ +— | Norm minimization

These are connected to a wide range of problems in mathematics and
computer science that at first glance might appear unrelated.

Plan for today:
© Introduction to the setting
© Applications and connections
© Algorithmic solutions
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Symmetries and group actions

Problem: How can we algorithmically and efficiently check equivalence? J
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Symmetries and group actions

Problem: How can we algorithmically and efficiently check equivalence? J

Interesting (and often difficult) problems with many applications:

» no polynomial-time algorithm known for graph isomorphism
> matrices equivalent iff equal rank, but how about tensors?

> given an arithmetic formula, does it always compute zero? finding a
deterministic algorithm is famous open problem in computer science

» computing normal forms, describing moduli spaces and invariants. . .

In many applications, equivalence can be modeled by group action. . .
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Examples: Group actions and symmetries

» Matrices and want to ignore basis: GL(n) by conjugation

g M:=gMg*
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Examples: Group actions and symmetries

» Matrices and want to ignore basis: GL(n) by conjugation

g M:=gMg*

v

Tensor networks: simultaneous conjugation on matrix tuples

g- (M) = (gMig™) ? (?—9—?—?—?—?—9)

Quantum channels: left-right action on matrix tuples

(g, h) - (M) = (gM;hT) (X)) =) MXM;
J

v

v

The above are also examples of quiver representations.

v

Quantum states, but also bilinear problems: tensor action

EA— <8
(AB,C)- T=(A®B&C)T \B~/
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Formalizing equivalence: Orbit problems
Group G C GL,(C) complex reductive, such as GL,, SL,,, or T, = ( . )

Action on V = C™ by linear transformations

Orbits Gv ={g - v : g € G} and their closures Gv

Q
j O‘
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Formalizing equivalence: Orbit problems

Group G C GL,(C) complex reductive, such as GL,, SL,,, or T, = ( . )
Action on V = C™ by linear transformations

Orbits Gv ={g - v : g € G} and their closures Gv

Q
—

Orbit problems:
> Given v and w, are they in the same orbit? That is, is Gv = Gw?
» Robust versions: Is w € Gv? Is Gv N Gw # ()?

» Null cone problem: 0 € Gv?
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Big picture: Orbits, optimization, and scaling

For concreteness, focus on null cone problem:

Is0 € Gv? |
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Big picture: Orbits, optimization, and scaling

Is P(v) = P(0) for every invariant polynomial P?J Algebra

|

Is0€ Gv? |

/

Minimize ||g - v|| over g € G. J

*EmPNeS Find g€ Gsth Vg|g-v||~= O.J

convexity

Optimization “Scaling Problem”

JL sym pIecticiﬂigeometry

Natural normal forms to tackle
other orbit problems.

Polytopes
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Big picture: Orbits, optimization, and scaling

Is P(v) = P(0) for every invariant polynomial P?J Algebra

L Kempf-N .
Minimize ||g - v|| over g € G. | £2""%° Find g € G s.th. Vellg-v] = O'J
convexity
Optimization “Scaling Problem”
\“/ symplecticj[geometry

Why care? Surprisingly many problems fit this picture. Make it
quantitative to obtain new insights and efficient algorithms.

Na
ott

Polytopes
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Example: Matrix scaling revisited

Let G=T,xT, act on V = Mat,(C):

81 hy
(g,h)~M=< )’V’< )
8n hp
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Example: Matrix scaling revisited

Let G=T,xT, act on V = Mat,(C):

81 hy
(g,h)-M=< >M< )
8n hp

Norm minimization:

infg pll(g,h) - M| =infg n Y |giMihil® = infy yern Y |MyPet
irj ]
» log-convex in x and y

Gradient:
VX:yZO(' )= (r(M)) C(M))

where r(M), ¢(M) row and column sums of matrix with entries [V/;;[°.
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Example: Matrix scaling revisited

Let G =ST,xST, act on V = Mat,(C):

81 hy
(g,h)-M=< >M< )
8&n hp

Norm minimization:

. . . 2 xi+yi

infg nll(g, h) - M||? = infg,p Z|giMijhj|2 =infeyery | Z|Mij| ety
i\Jj iJ

» log-convex in x and y

Gradient:
Viey=o(--) = (r(M),e(M)) — [ M|(1,1)

where r(M), c¢(M) row and column sums of matrix with entries II\/I,-J-|2.
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Example: Matrix scaling revisited

Let G =ST,xST, act on V = Mat,(C):

81 hy
(g,h)-M=< >M< )
8&n hp

Norm minimization:
infg nll(g, h) - M||? = infg,p Z|gi/\/7ijhj\2 =infeyery | Z|Mij|2exi+yj
i’.j iv.j
» log-convex in x and y
Gradient:
Vieey—o(..) = (r(M),c(M)) — [M|?(1,1)

where r(M), c¢(M) row and column sums of matrix with entries II\/I,-J-|2.
Matrix scaling and norm minimization are equivalent by convexity! ® J

Explains Sinkhorn & permanent. Starting point for cutting-edge algos.
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Example: Matrix scaling revisited

Let G =ST,xST, act on V = Mat,(C):

81 hy
(g,h)-M=< >M< )
8&n hp

Norm minimization:
infg.nll(g, h) - M||> = infg s Z|gi/\/7ijhj\2 =infeyery | Z|Mij|2exi+yj
i’.j iv.j
» log-convex in x and y
Gradient:
Vieey—o(..) = (r(M),c(M)) — [M|?(1,1)
where r(M), c¢(M) row and column sums of matrix with entries II\/I,-J-|2.

GIT vs symplectic quotient: Given semistable M, Sinkhorn algorithm
approximates M’ € G - M with zero moment map. .. J
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Example: Matrix scaling revisited

Let G =ST,xST, act on V = Mat,(C):

81 hy
(g,h)-M=< >M< )
8&n hp

Norm minimization:
infg.nll(g, h) - M||> = infg s Z|gi/\/7ijhj\2 =infeyery | Z|Mij|2exi+yj
iyj isj
» |og-convex in x and y
Gradient:
Vieey—o(..) = (r(M),c(M)) — [M|?(1,1)
where r(M), c¢(M) row and column sums of matrix with entries II\/I,-J-|2.

In general, torus actions capture linear programming — one of the most
widely used paradigms in convex optimization (and more)!
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Example: Horn problem

Lletoxi >...2an P12=...2 PBn Y1 = ... = Yn be integers.

Horn problem: When 3 Hermitian n x n matrices A, B, C
with spectrum «, 3, v such that A+ B = C? J

» Horn conjectured exponentially many linear inequalities on «, 3, ¥

> eg,u+PB1>v71

» proved in late 90s. by now, very precise mathematical understanding.
[Klyachko, Knutson-Tao, Belkale, Ressayre, Paradan, ...]
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Knutson-Tao: ...iff Littlewood-Richardson coefficient CZ’B >0
» counts multiplicities in representation theory,
combinatorial gadgets, integer points in polytopes, ... e
> poly-time algorithm can check if this is the case [Mulmuley]
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Example: Algorithmic Horn problem

Lletoxi >...2an P12=...2 PBn Y1 = ... = Yn be integers.

Horn problem: When 3 Hermitian n x n matrices A, B, C
with spectrum «, 3, v such that A+ B = C? J

» Horn conjectured exponentially many linear inequalities on «, 3, ¥
> eg,out+PB1>V1

» proved in late 90s. by now, very precise mathematical understanding.
[Klyachko, Knutson-Tao, Belkale, Ressayre, Paradan, ...]

Knutson-Tao: ...iff Littlewood-Richardson coefficient cl’ﬁ >0
» counts multiplicities in representation theory,
combinatorial gadgets, integer points in polytopes, ... e
> poly-time algorithm can check if this is the case [Mulmuley]

Yet, no known efficient algorithms to find such A, B, C (if «, 3,y are
compatible), or to find a violated inequality (if they are not). J
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Example: Operator scaling and polynomial identity testing

Any matrix tuple X = (Xj) defines map ®(A) =3 , X, AX;. Scaling:

(g, h) - (Xi) = (gXkh™) (g, h € GL,)

10 /21



Example: Operator scaling and polynomial identity testing

Any matrix tuple X = (Xj) defines map ®(A) =3 , XkAX;. Scaling:

(g, h) - (Xi) = (Xkh™)  (g,h e GL,)

Doubly stochastic if ®(1) =1 and ®*(/) = I.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.J

10 /21



Example: Operator scaling and polynomial identity testing

Any matrix tuple X = (Xj) defines map ®(A) =3 , X, AX;. Scaling:
(g,h) - (Xi) = (gXkh™)  (g,h € GLy)
Doubly stochastic if ®(1) =1 and ®*(/) = I.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.J

Possible iff det ), oxx @ X # 0 for some matrices &y (semi-invariants!).

10 /21



Example: Operator scaling and polynomial identity testing

Any matrix tuple X = (Xj) defines map ®(A) =3 , XkAX;. Scaling:
(g,h) - (Xi) = (gXkh™)  (g,h € GLy)
Doubly stochastic if ®(1) =1 and ®*(/) = I.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.J

Possible iff det ), oxx @ X # 0 for some matrices &y (semi-invariants!).
> equivalent: is arithmetic formula in non-commuting variables nonzero?

» a simple algo solves this in deterministic poly-time!

[Garg et al, Ivanyos et al]
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Example: Operator scaling and polynomial identity testing

Any matrix tuple X = (Xj) defines map ®(A) =3 , XkAX;. Scaling:
(g,h) - (Xi) = (gXkh™)  (g,h € GLy)
Doubly stochastic if ®(1) =1 and ®*(/) = I.

Operator scaling problem: Given X, find approx. doubly stochastic scaling.J

Possible iff det ), oxx @ X # 0 for some matrices &y (semi-invariants!).

> equivalent: is arithmetic formula in non-commuting variables nonzero?

> a simple algo solves this in deterministic poly-timel! [Garg et al, Ivanyos et al]

When o restricted to scalars: major open problem in computer science! )

Many further connections (Brascamp-Lieb inequalities, Paulsen problem, MLE, ...).
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Example: Tensor scaling @@

Tensors T € (C")®9 describe quantum states of d particles. Scaling:

(81ye s8d) T =(g1®---®@gq) T (gk € GL,)
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Example: Tensor scaling

Tensors T € (C")®9 describe quantum states of d particles. Scaling:

S=(g1,--8) T=(g1® - @g4)T (g € GLp)
> state of k-th particle is 0, = 5, S/, where Sy is k-th flattening of S.

Tensor scaling problem: Given T, which
(01,...,04) can be obtained by scaIing7

» since [S] — (01,...,04) is @ moment map for action of K U(n
answer captured by moment polytopes

» distance to origin measures instability — recent notions such as
quantum functionals, G-stable ranks. [Blasiak et al, Christand| et al, Derksen, ...]

» applications in algebraic complexity, combinatorics, q. information, ...
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Example: Tensor scaling

Tensors T € (C")®9 describe quantum states of d particles. Scaling:

S=(g1,.--,8) T=@1® - ®g)T (g €GLy)
> state of k-th particle is 0, = 5, S/, where Sy is k-th flattening of S.

Tensor scaling problem: Given T, which ]
(01,...,04) can be obtained by scaling7

» since [S] — (01,...,04) is @ moment map for action of K U(n
answer captured by moment polytopes

» distance to origin measures instability — recent notions such as
quantum functionals, G-stable ranks. [Blasiak et al, Christand| et al, Derksen, ...]

» applications in algebraic complexity, combinatorics, q. information, ...

> exponentially complex polytopes, succinctly encoded by group action

Nt el
Ao S

W

What other interesting polytopes are hidden in this way?J

I
|
i
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Connections and applications

Scaling problems capture and connect many other applications (thanks to

often hidden symmetries):

theoretical algebraic quantum

Grogram testin@ representation theory quantum entanglement
derandomization @timal transp@ maximum likelihood

classical continuous applied

This was discovered in a series of works, by many authors, over the past
years. It has already proved key to faster algorithms and structural insight.

General picture? How to find algorithms beyond Sinkhorn & friends? J
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Symmetry and Optimization

13 /21



Norm minimization and gradient

In general, we want to minimize the Kempf-Ness function:

F:G—R, F(g):=logl|g-vl
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Norm minimization and gradient

In general, we want to minimize the Kempf-Ness function:
F:G—R, F(g):=logl|g-v|

For concreteness, G = GL,. By the polar decomposition, can restrict to:
PD,={p=¢" : X € Herm,} = K\G

This is a Hadamard symmetric space. It has nonpositive curvature:

Gradient VF (/) is moment map in the sense of symplectic geometry.
As discussed VF =0 captures natural “scaling” problems!
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Geodesic convexity

While not convex in the usual sense, the objective

F(p) =logllp- vl |

is convex along the geodesics of PD,,, i.e., 97F(eXt) > 0.

T v

/‘WK

[Kempf-Ness]
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Geodesic convexity

While not convex in the usual sense, the objective

F(p) =loglp-v| |

is convex along the geodesics of PD,, i.e., afF(eXt) > 0. [Kempf-Ness]

T v

/‘\D-Q\X
This implies critical points are global minima (like in the Euclidean case).

J
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Geodesic convexity made quantitative

While not convex in the usual sense, the objective

F(p) =logllp- v| |

is convex along the geodesics of PD,, i.e., afF(eXt) > 0. [Kempf-Ness]

Ix
/‘\D-Q\X
This implies critical points are global minima (like in the Euclidean case).

How convex for given action? Necessary for algorithms! )
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Geodesic convexity made quantitative

Easy: The objective F(p) = log ||p - v|| is “smooth”, meaning

2F(eXt) < L||X|3.
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Geodesic convexity made quantitative

Easy: The objective F(p) =log ||p - v|| is “smooth”, meaning

AZF(X) < L|X|3.

Not so easy: Quantitative Kempf-Ness theorem. For F, = inf, F(p),

IV Fll2 F.—F IVFI3
=17k < g < 1-55 J

® relates norm minimization < scaling in a quantitative way
® implies either can solve null cone problem, rigorously!

» Non-commutative variant of convex duality.

Parameters L, v depend on representation-theoretic data of action.
16 / 21



Framework: Noncommutative group optimization  @rcomw

Action of complex reductive G C GL, on V = C™.

Is 0 € Gv? |

/

convexit;
Minimize ||g - v[| over g € G. | S Eing g€ Gsth Vg -v|~0. |

quantitative

Norm Minimization Scaling Problem
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Framework: Noncommutative group optimization  @rcomw

Action of complex reductive G C GL, on V = C™.

Is0 e Gv?

/ 5

convexit,
Minimize ||g - v|| over g € G. J % Find g € G s.th. V||g - v|| = 0. J

quantitative

Norm Minimization Scaling Problem

> All examples mentioned earlier fall into this framework.
» Geodesic convexity explains why simple greedy algorithms can work.
» Made quantitative by NC generalization of convex programming duality.

» We also provide general algorithms for geodesic convex optimization
(which solve problems in poly time for several interesting actions).
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Algorithmic appetizer

Simplest approach: Repeatedly perform geodesic gradient steps

g e tVFlelg
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Algorithmic appetizer

Simplest approach: Repeatedly perform geodesic gradient steps

g e tVFlelg

If F bounded from below, algorithm finds g € G such that [|[VF(g)| < ¢
within T = poly(%, input size) steps.

Analysis: Smoothness implies F decreases in each step. Combine with a priori
lower bound obtained using constructive invariant theory.

Same algorithm solves null cone problem in time poly(%, input size).

Much faster (in theory and practice) than algebraic methods (e.g., via Grébner bases).
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Beyond gradient descent

There are more clever algorithms: trust region or interior-point methods,
which we recently generalized to Hadamard manifolds (srcoww Hirai-Nieuwboer-w].
These minimize local quadratic approximations
1
Fle'g) ~ Q(H)=Flg) +VF(g)lHl + ;V*F(g)[H,H

on small neighborhoods. Need F “robust” or “self-concordant”.
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There are more clever algorithms: trust region or interior-point methods,
which we recently generalized to Hadamard manifolds (srcoww Hirai-Nieuwboer-w].

These minimize local quadratic approximations

Fleflg) ~ Q(H)=Fl(g)+ VF(g)H + %VQF(g)[H, Hi

on small neighborhoods. Need F “robust” or “self-concordant”.

Theorem

If F bounded from below, algorithm finds g € G such that
F(g) <infgeg F(g) + ¢ within T = poly(log %, input size, %) steps.

State of the art: General algorithms for convex optimization in
nonpositive curvature, which in particular solve problems in GIT.
Polynomial time for many interesting actions — but not always!
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Algorithms for moment polytopes F(g) =log |lg - v||

Recall scaling problem: Find g € G such that VF(g) ~ 0. Depending on
action, this can mean doubly stochastic matrix, ...~ uniform marginals.
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Algorithms for moment polytopes F(g) =log |lg - v||

Recall scaling problem: Find g € G such that VF(g) = 0. Depending on
action, this can mean doubly stochastic matrix, ...~ uniform marginals.

More generally, we can ask nonuniform scaling problem:

Given p, find g € G s.th. VF(g) =~ p. J

In other words, want to prescribe an arbitrary value for the moment map.

Moment polytope captures possible values if restrict to Weyl chamber:

A(v) ={p : VF(g) ~p}

State of the art: Algorithms discussed above can also solve nonuniform
scaling problem and membership in moment polytopes. Polynomial in
most parameters for many interesting actions — but not in the bitsize of p!
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Summary and outlook

Symmetries lie behind many natural computational problems
from algebra and analysis to classical and quantum CS.

Polytopes encode answers & clues to many of these problems.
Often exp. vertices & facets, yet can admit efficient algos.

Symmetries are key to tackling these problems by optimization.
Enabled by geodesic convexity and invariant theory.

Many open questions: Polynomial time algorithms for all actions?
Complexity of algebraic problems? Structured or typical data? Other
problems with natural symmetries? ... Happy birthday, Micheéle!
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